Survival, proliferation, and migration of human meningioma stem-like cells in a nanopeptide scaffold

نویسندگان

  • Sajad Sahab Negah
  • Hadi Aligholi
  • Zabihollah Khaksar
  • Hadi Kazemi
  • Sayed Mostafa Modarres Mousavi
  • Maryam Safahani
  • Parastoo Barati Dowom
  • Ali Gorji
چکیده

OBJECTIVES In order to grow cells in a three-dimensional (3D) microenvironment, self-assembling peptides, such as PuraMatrix, have emerged with potential to mimic the extracellular matrix. The aim of the present study was to investigate the influence of the self-assembling peptide on the morphology, survival, proliferation rate, migration potential, and differentiation of human meningioma stem-like cells (hMgSCs). MATERIALS AND METHODS The efficacy of a novel method for placing hMgSCs in PuraMatrix (the injection approach) was compared to the encapsulation and surface plating methods. In addition, we designed a new method for measurement of migration distance in 3D cultivation of hMgSCs in PuraMatrix. RESULTS Our results revealed that hMgSCs have the ability to form spheres in stem cell culture condition. These meningioma cells expressed GFAP, CD133, vimentin, and nestin. Using the injection method, a higher proliferation rate of the hMgSCs was observed after seven days of culture. Furthermore, the novel migration assay was able to measure the migration of a single cell alone in 3D environment. CONCLUSION The results indicate the injection method as an efficient technique for culturing hMgSCs in PuraMatrix. Furthermore, the novel migration assay enables us to evaluate the migration of hMgSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survival, proliferation, and migration of human meningioma stem-like cells in a nanopeptide scaffold

Objective(s): In order to grow cells in a three-dimensional (3D) microenvironment, self-assembling peptides, such as PuraMatrix, have emerged with potential to mimic the extracellular matrix. The aim of the present study was to investigate the influence of the self-assembling peptide on the morphology, survival, proliferation rate, migration potential, and differentiation of human meningioma st...

متن کامل

P 41: Meningioma Stem Like Cells and Self Assembling Nanopeptide Scaffold for Treatment of Traumatic Brain Injury in Animal Model

Introduction: Brain injury is an important cause of morbidity and mortality worldwide and so far, there has been no absolute treatment for the damaged brain tissue. Using human stem cells with self-assembling scaffolds can be a promising method for treatment of traumatic brain injury. Materials and Methods: Human meningioma stem cells were isolated, cultured and then expanded into in vitro cond...

متن کامل

O14: Application of Neural Stem Cells Derived from Human Meningioma in Traumatic Brain Injury

Traumatic brain injury is considered as one of the main causes of morbidity and mortality worldwide. Apart from primary mechanical injury, Secondary injuries due to inflammation and apoptosis result in great neuronal damage. Current treatments are not able to regenerate the damaged part and prevent future sequels. Using human stem cells with self-assembling scaffolds may be promising in treatme...

متن کامل

O15: Using Stromal Cell-Derived Factor-I as Bio Active Motif in A Novel Self-Assembly Peptide Nanofiber Scaffold: an Approach to Improve Cell Therapy in Brain Injury

Traumatic brain injury (TBI) is one of the main causes of mortality and morbidity worldwide. Despite extensive investigations over the past few decades, no effective therapies exist to improve the brain function in patients with TBI. Neural tissue engineering is an attractive therapeutic approach to restore the brain structure and function of damaged tissue. Bioactive motif of Stromal cell-deri...

متن کامل

The proliferation of fibroblast cells on the polycaprolactane-chitosan-tannic acid scaffold

Background and Objective: Tissue engineering is a new method for replacing damaged tissue components in order to improve its function. In this method, a porous scaffold mixed with polysaccharide and synthetic antioxidants is first produced and then stem cells are cultured inside it. In this study, the polycaprolactane-chitosan-tannic acid scaffold was used to reproduce the amount Fibroblast cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2016